A note on the inviscid Orr-Sommerfeld equation

By JOHN W. MILES
Department of Engineering and Institute of Geophysics, University of California, Los Angeles \dagger

(Received 18 December 1961)
The inviscid Orr-Sommerfeld equation for $\phi(y)$ in $y>0$ subject to a null condition as $y \rightarrow \infty$ is attacked by considering separately the intervals ($0, y_{1}$) and (y_{1}, ∞), such that the solution in $\left(0, y_{1}\right)$ can be expanded in powers of the wavenumber (following Heisenberg) and the solution of (y_{1}, ∞) regarded as real and non-singular. Complementary variational principles for the latter solution are determined to bound an appropriate parameter from above and below. It also is shown how the original differential equation may be transformed to a Riccati equation in such a way as to facilitate both the Heisenberg expansion of the solution in $\left(0, y_{1}\right)$ and numerical integration in $\left(y_{1}, \infty\right)$. These methods are applied to a velocity profile that is linear in ($0, y_{1}$) and asymptotically logarithmic as $y \rightarrow \infty$, and it is found that the mean of the two variational approximations is in excellent agreement with the results of numerical integration of the Riccati equation.

1. Introduction

Investigations of the stability of the parallel shear flow $U(y)(\operatorname{Lin} 1955)$ or of the transfer of energy from such a shear flow to a surface wave at $y=0$ (Brooke Benjamin 1959, 1960; Miles $1957 a, 1959 a, b, 1962$) lead to the following boundaryvalue problem for the inviscid stream function $\phi(y) \exp [i k(x-c t)]$.

Solve the inviscid Orr-Sommerfeld equation

$$
\begin{equation*}
(U-c)\left(\phi^{\prime \prime}-k^{2} \phi\right)-U^{\prime \prime} \phi=0 \tag{1.1}
\end{equation*}
$$

for $\phi(y), y>0$, subject to the null condition

$$
\begin{equation*}
\phi(y) \rightarrow 0 \quad(k y \rightarrow \infty), \tag{1.2}
\end{equation*}
$$

and determine the complex parameter

$$
\begin{equation*}
w=u+i v=\left[1+\left(U_{0}^{\prime} \phi_{0} / c \phi_{0}^{\prime}\right)\right]^{-1} \tag{1.3}
\end{equation*}
$$

where k is a real positive wave-number, and c is a complex velocity having a small, positive-imaginary part c_{i}.
We use primes to imply differentiation with respect to y, the subscript zero to imply evaluation at $y=0$ (e.g. $\phi_{0}^{\prime} \equiv d \phi / d y$ at $y=0$), and the subscript c to imply evaluation at the singular point $y=y_{c}$, defined by

$$
\begin{equation*}
U\left(y_{c}\right)=c . \tag{1.4}
\end{equation*}
$$

\dagger Present address: Department of Mathematice, Institute of Advanced Studies, Australian National University, Canberra.

We shall assume that $U(y)$ is a monotonically increasing function of y that vanishes at $y=0$.

The following treatment of this boundary-value problem was developed for a specific, surface-wave generation problem (Miles 1962). It appears likely, however, that the method of attack should be of more general interest, and it is for this reason that the analysis is being published separately.

The principal difficulty in solving the boundary-value problem posed by (1.1) to (1.3) is the singularity at $y=y_{c}$, where ϕ exhibits the behaviour

$$
\begin{equation*}
\phi \rightarrow \phi_{c}\left\{1+\left(U_{c}^{\prime \prime} / U_{c}^{\prime}\right)\left(y-y_{c}\right) \log \left[k\left(y-y_{c}\right)\right]+O\left[k\left(y-y_{c}\right)\right]\right\} . \tag{1.5}
\end{equation*}
$$

The solution for $y \gg y_{c}$ is well behaved, on the other hand, and its asymptotic behaviour is given by

$$
\begin{equation*}
\phi(y) \sim e^{-k y}\left[1-\frac{1}{2 k} \int_{\infty}^{y} \frac{U^{\prime \prime}(y) d y}{U(y)-c}+\ldots\right] \tag{1.6}
\end{equation*}
$$

provided that $U^{\prime \prime} \mid k^{2}(U-c)$ vanishes uniformly as $k y \rightarrow \infty$.
We shall attack the problem on the hypotheses that (a) there exists a real number $k y_{1}$ such that
and (b)

$$
\begin{gather*}
\left|y_{c}\right|<y_{1} \ll 1 / k \tag{1.7a}\\
\left|U_{1}-c\right| \gg c_{i} \tag{1.7b}
\end{gather*}
$$

where the subscript 1 implies evaluation at $y=y_{1}$. We then may consider separately the intervals $\left(0, y_{1}\right)$, near which ϕ is singular according to (1.5), and (y_{1}, ∞), in which the differential equation (1.1) is regular. We shall designate the solutions in these intervals as the inner and outer solutions and seek approximations to them that tend to the exact solutions as $k y_{1} \rightarrow 0$ and $c_{i} \rightarrow 0+$, respectively. Before entering into those considerations, however, we shall find it convenient to transform the dependent variable along lines suggested by Lighthill (1953, 1957).

2. Transformations

Introducing the dependent variables θ and w according to

$$
\begin{equation*}
\phi=(U-c) \theta(y)=k^{-2}(U-c)^{-1} \varpi^{\prime}(y) \tag{2.1a,b}
\end{equation*}
$$

and the abbreviation

$$
\begin{equation*}
Y(y)=(U-c)^{2} \tag{2.2}
\end{equation*}
$$

we may transform the second-order differential equation (1.1) to the pair of first-order differential equations

$$
\begin{equation*}
Y \theta^{\prime}=\varpi \quad \text { and } \quad \varpi^{\prime}=k^{2} Y \theta \tag{2.3a,b}
\end{equation*}
$$

Eliminating either ϖ or θ between $(2.3 a, b)$, we obtain the complementary, Sturm-Liouville equations

$$
\begin{equation*}
\left(Y \theta^{\prime}\right)^{\prime}-k^{2} Y \theta=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(Y^{-1} w^{\prime}\right)^{\prime}-k^{2} Y^{-1} w=0 \tag{2.5}
\end{equation*}
$$

We remark that $\theta(y) \exp [i k(x-c t)]$ and $\varpi(y) \exp [i k(x-c t)]$ are proportional to the inclination of the streamlines and the perturbation pressure, respectively, in the inviscid flow field of the physical problem.

We also shall find it convenient to introduce

$$
\begin{equation*}
\Omega(y)=-\theta \mid Y \theta^{\prime}=-\varpi^{\prime} / k^{2} Y \varpi \tag{2.6a,b}
\end{equation*}
$$

Substituting (2.6a,b) into (2.4) and (2.5), respectively, we obtain the Riccati equation

$$
\begin{equation*}
\Omega^{\prime}=k^{2} Y \Omega^{2}-Y^{-1} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega \sim(k Y)^{-1} \quad \text { as } \quad k y \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Substituting (2.1a) and (2.6a) into (1.3), we obtain

$$
\begin{equation*}
w=1+U_{0}^{\prime} c \Omega_{0} . \tag{2.9}
\end{equation*}
$$

3. Inner solution

Integrating (2.7) inward from $y=y_{1}$ along a path indented under $y=y_{c}$, we obtain

$$
\begin{equation*}
\Omega=\Omega_{1}-\int_{y_{1}}^{y} Y^{-1} d y+k^{2} \int_{y_{1}}^{y} Y \Omega^{2} d y . \tag{3.1}
\end{equation*}
$$

We may use this result to obtain, by iteration, an expansion of Ω_{0} in powers of k^{2}. This is, in essence, Heisenberg's procedure (Lin 1955, § 3.4) for solving the boundary-value problem posed by (1.1)-(1.3). In (what is equivalent to) the conventional application of this procedure, one assumes $U^{\prime} \equiv 0$ in $y \geqslant y_{1}$ and takes $\Omega_{1}=1 / k Y_{1}$ in accord with (2.8).

Invoking the restriction (1.7a), we shall rest content with the first approximation to (3.1), which yields
where

$$
\begin{gather*}
\Omega_{0}=\left(\Omega_{1}+K_{1}\right)\left[1+O\left(k y_{1}\right)^{2}\right], \tag{3.2}\\
K_{1}=\int_{0}^{y_{1}}(U-c)^{-2} d y . \tag{3.3}
\end{gather*}
$$

Integrating (3.3) by parts, we obtain

$$
\begin{equation*}
J=K_{1}+\left(U_{0}^{\prime} c\right)^{-1}=-\left[U_{1}^{\prime}\left(U_{1}-c\right)\right]^{-1}-\int_{0}^{y_{1}} U^{\prime-2} U^{\prime \prime}(U-c)^{-1} d y \tag{3.4}
\end{equation*}
$$

Substituting (3.2) and (3.3) into (2.9), we obtain

$$
\begin{equation*}
w=U_{0}^{\prime} c\left(\Omega_{1}+J\right)\left[1+O\left(k y_{1}\right)^{2}\right] . \tag{3.5}
\end{equation*}
$$

Invoking the restriction ($1.7 b$), we have the known result ($\operatorname{Lin} 1955$) that the imaginary part of w is derived almost entirely from the integral J according to

$$
\begin{equation*}
v=-\pi\left(U_{c}^{\prime \prime} U_{0}^{\prime} c / U_{c}^{\prime 3}\right)\left[1+O\left(k\left|y_{c}\right|\right)^{2}\right] . \tag{3.6}
\end{equation*}
$$

4. Outer solution

It remains to determine the parameter Ω_{1} from the outer solution. We first remark that, in so far as we may approximate $U_{1}-c$ as real in $y>y_{1}$ by virtue of $(1.7 b), Y(y)$ is a positive definite function in ($\left.y_{1}, \infty\right)$. Applying Sturm's oscillation theorem (Ince 1944) to the differential equations (2.4) and (2.5) and invoking the requirement that each of θ and w vanishes at $y=\infty$, it then follows that neither θ nor w can vanish in $\left(y_{1}, \infty\right) . \dagger$ This implies that the function Ω is bounded
and non-oscillatory in (y_{1}, ∞), in consequence of which its solution by numerical integration is straightforward. In carrying out this integration it generally would appear to be expedient to introduce Y, rather than y, as the independent variable and to integrate inward from $Y_{2}, \Omega_{2}=1 / k Y_{2}$ to Y_{1}, Ω_{1}, where $k y_{2} \gg 1$.

We also may obtain variational approximations to Ω_{1} that bound it from above and below. Multiplying the differential equation (2.4) through by either θ or its complex conjugate θ^{*}, integrating by parts over (y_{1}, ∞), invoking the null condition at $y=\infty$, and solving the resulting expressions for Ω_{1}, we obtain

$$
\begin{align*}
\Omega_{1}^{-1} & =\theta_{1}^{-2} \int_{y_{1}}^{\infty}\left(\theta^{\prime 2}+k^{2} \theta^{2}\right) Y d y \tag{4.1a}\\
& =\left|\theta_{1}\right|^{-2} \int_{y_{1}}^{\infty}\left(\left|\theta^{\prime}\right|^{2}+k^{2}|\theta|^{2}\right) Y d y . \tag{4.1b}
\end{align*}
$$

Operating similarly on (2.5), we obtain

$$
\begin{align*}
\Omega_{1} & =\left(k \varpi_{1}\right)^{-2} \int_{y_{1}}^{\infty}\left(\varpi^{\prime 2}+k^{2} \varpi^{2}\right) Y^{-1} d y \tag{4.2a}\\
& =\left|k \varpi_{1}\right|^{-2} \int_{y_{1}}^{\infty}\left(\left|\varpi^{\prime}\right|^{2}+k^{2}|\varpi|^{2}\right) Y^{-1} d y \tag{4.2b}
\end{align*}
$$

The integrals (4.1 a) and (4.2a) are (a) stationary with respect to first-order variations of θ and ϖ about the true solutions of (2.4) and (2.5), respectively, provided that the approximate solutions are differentiable and vanish uniformly as $k y \rightarrow \infty,(b)$ absolute minima with respect to arbitrary variations about the true solutions, and (c) invariant under scale transformations of θ and ϖ. These properties render ($4.1 a$) and ($4.2 a$) quite suitable for the approximate determination of Ω_{1}, bounding it from above and below.

The integrals (4.1b) and (4.2b) are identical with (4.1a) and (4.2a) for real θ and π, but we have included them by virtue of their utility in the more general case of unrestricted, complex c.

Perhaps the simplest approximations in connexion with the variational integrals of (4.1) and (4.2) are the solutions to (2.4) and (2.5) for $U^{\prime}(y) \equiv 0$, namely

$$
\begin{equation*}
\theta=e^{-k y} \quad \text { and } \quad \pi=e^{-k y} . \tag{4.3a,b}
\end{equation*}
$$

Designating the corresponding approximations to Ω_{1} by Ω_{1--} and Ω_{1+} (implying lower and upper bounds, respectively), we obtain
and

$$
\begin{align*}
& 1 / \Omega_{1-}=2 k^{2} \int_{y_{1}}^{\infty} e^{-2 k\left(y-y_{1}\right)} Y d y \tag{4.3}\\
& \Omega_{1+}=2 \int_{y_{1}}^{\infty} e^{-2 k\left(y-y_{1}\right)} Y^{-1} d y \tag{4.4}
\end{align*}
$$

We remark that the approximation (4.4) also may be obtained by substituting $\Omega=(1 / k Y)+f(y)$ in (2.7), neglecting f^{2}, and integrating the result between

[^0]$y=y_{1}$ and $y=\infty$. We also may show that (4.4) is an asymptotic approximation to Ω_{1} as $k y_{1} \rightarrow \infty$; however, we intend to use (4.4) for small values of $k y_{1}$.

5. Application to turbulent boundary layer

We now apply the foregoing development to the mean velocity profile for a turbulent boundary layer, the results being required in connexion with the afore-mentioned surface-wave problem (Miles 1962). An approximation to this profile that agrees well with observations is given by (Miles 1957 b)

$$
\begin{equation*}
U=\left(U_{*}^{2} / \nu\right) y \quad\left(0 \leqslant y \leqslant y_{1}\right), \tag{5.1}
\end{equation*}
$$

in the laminar sublayer and by

$$
\begin{gather*}
U=U_{1}+\left(U_{*} / \kappa\right)\left[\alpha-\tanh \left(\frac{1}{2} \alpha\right)\right] \tag{5.2a}\\
y=y_{1}+\left(\nu / 2 \kappa U_{*}\right) \sinh \alpha \tag{5.2b}
\end{gather*}
$$

and
outside this sublayer, where ν is the kinematic viscosity, κ is von Kármán's constant,

$$
\begin{equation*}
U_{\mathbf{1}}=\left(U_{*}^{2} / \nu\right) y_{1} \tag{5.3}
\end{equation*}
$$

is the velocity at the edge of the laminar sublayer, and α is a parametric variable. The asymptotic form of (5.2) is

$$
\begin{equation*}
U \sim U_{1}+\frac{U_{*}}{\kappa}\left[\log \left(\frac{4 \kappa U_{*} y}{\nu}\right)-1+O\left(\frac{y_{1}}{y}\right)\right], \tag{5.4}
\end{equation*}
$$

which relates the usual additive constant in the logarithmic profile to $\kappa U_{1} / U_{*}$. We shall identify y_{1} in this representation with y_{1} in (1.7), thereby implying $k y_{1} \ll 1$.

We may represent our results as functions of the parameters

$$
\begin{align*}
& R=\kappa U_{*} / k \nu \tag{5.5}\\
& A=\kappa\left(U_{1}-c\right) / U_{*} . \tag{5.6}
\end{align*}
$$

and
Introducing the change of variable

$$
\begin{equation*}
\Omega(y)=\left(\kappa^{2} / k U_{*}^{2}\right) G(\alpha) \tag{5.7}
\end{equation*}
$$

in (2.7), we then obtain

$$
\begin{gather*}
2 R G^{\prime}(\alpha)=\left[v^{2}(\alpha) G^{2}(\alpha)-v^{-2}(\alpha)\right] \cosh \alpha, \tag{5.8a}\\
v(\alpha)=A+\alpha-\tanh \left(\frac{1}{2} \alpha\right) . \tag{5.8b}
\end{gather*}
$$

where
Substituting (5.1) and (5.7) into (3.4) and (3.5), we may place the result in the form

$$
\begin{gather*}
w=\left(\kappa c / U_{*}\right) W(R, A), \tag{5.9}\\
W(R, A)=R G(0)-A^{-1} . \tag{5.10}
\end{gather*}
$$

Turning to the variational approximations (4.3) and (4.4), substituting (5.2a,b) therein and then determining the corresponding approximations to W through (5.7) and (5.10) yields
and

$$
\begin{equation*}
W_{-}=-A^{-1}+R^{2}\left[\int_{0}^{\infty} \exp \left(-R^{-1} \sinh \alpha\right) v^{2}(\alpha) \cosh \alpha d \alpha\right]^{-1} \tag{5.11}
\end{equation*}
$$

$$
\begin{equation*}
W_{+}=-A^{-1}+\int_{0}^{\infty} \exp \left(-R^{-1} \sinh \alpha\right) v^{-2}(\alpha) \cosh \alpha d \alpha \tag{5.12}
\end{equation*}
$$

Numerical results for W_{-}, W_{+}and $\frac{1}{2}\left(W_{-}+W_{+}\right)$are compared with those obtained through the direct integration of (5.8) in table 1 for $\kappa=0 \cdot 4$. We conclude that
the individual approximations W_{-}and W_{+}are likely to be adequate only for rather large values of the Reynolds number R, but that the mean variational approximation $\frac{1}{2}\left(W_{-}+W_{+}\right)$should be adequate for $R \geqslant 10$ (smaller values of R were of no interest in the contemplated application of the results) and $A \geqslant 0 \cdot 4$

A	R	W_{+}	W_{-}	$\frac{1}{2}\left(W_{+}+W_{-}\right)$	W
$0 \cdot 4$	10	2.827	-0.6185	$1 \cdot 104$	1.272
	10^{2}	$8 \cdot 676$	$2 \cdot 818$	$5 \cdot 747$	$5 \cdot 875$
	10^{3}	$30 \cdot 64$	20.78	25.71	$25 \cdot 88$
	10^{4}	147.1	126.0	136.6	136.9
1	10	1.016	0.2144	$0 \cdot 630$	$0 \cdot 6634$
	10^{2}	$5 \cdot 215$	3.137	$4 \cdot 176$	$4 \cdot 240$
	10^{3}	$23 \cdot 40$	18.60	$21 \cdot 00$	21.11
	10^{4}	125.1	111.8	118.5	118.8
2	10	$0 \cdot 3678$	$0 \cdot 1803$	0.2741	$0 \cdot 2850$
	10^{2}	$3 \cdot 120$	$2 \cdot 380$	$2 \cdot 750$	2.775
	10^{3}	16.93	14.63	$15 \cdot 78$	$15 \cdot 84$
	10^{4}	$99 \cdot 72$	91.85	95.79	95.96
4	10	0.0777	0.0473	0.0625	0.0640
	10^{2}	1.555	$1 \cdot 368$	$1 \cdot 462$	1.467
	10^{3}	10.34	9.533	9.937	9.956
	10^{4}	$68 \cdot 37$	$64 \cdot 86$	$66 \cdot 62$	66.68

Table 1. A comparison of the mean variational approximation $\frac{1}{2}\left(W_{+}+W_{-}\right)$, as determined from (5.11) and (5.12), with the result for W given by (5.10) after numerical integration of (5.8).
($U_{1}-c \geqslant U_{*}$). Granted the availability of a high-speed computer, the integration of (5.8)-or, in the general case, of (2.7)-is straightforward, but even then the use of the mean variational approximation may be more economical.

This work was supported by the Office of Naval Research under Contract NONR-233(70).

REFERENCES

Brooke Benjamin, T. 1959 J. Fluid Mech. 6, 161.
Broofe Benjamin, T. 1960 J. Fluid Mech. 9, 513.
Ince, E. L. 1944 Ordinary Differential Equations, p. 227. New York: Dover.
Lighthill, M. J. 1953 Proc. Roy. Soc. A, 217, 478.
Lighthill, M. J. 1957 J. Fluid Mech. 3, 113.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Miles, J. W. 1957 a J. Fluid Mech. 3, 185.
Miles, J. W. $1957 b$ J. Aero. Sci. 24, 704.
Milles, J. W. 1959 a J. Fluid Mech. 6, 568.
Miles, J. W. 1959 b J. Fluid Mech. 6, 583.
Miles, J. W. 1962 J. Fluid Mech. 13, 433.

[^0]: \dagger It is readily seen (for example, by comparing (4.1b) to (4.1a)) that these assumptions render θ / θ_{1} and ϖ / ω_{1} real and hence that θ and ϖ are real within constant, possibly complex factors. This remark justifies the subsequent application of Sturm's oscillation theorem (or a trivial generalization thereof).

