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A note on the inviscid Orr-Sommerfeld equation 
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(Received 18 December 1961) 

The inviscid Orr-Sommerfeld equation for &y) in y > 0 subject to a null con- 
dition as y + co is attacked by considering separately the intervals (0 ,  yl) and 
(yl, co), such that the solution in (0 ,  yl) can be expanded in powers of the wave- 
number (following Heisenberg) and the solution of (yl, co) regarded as real and 
non-singular. Complementary variational principles for the latter solution are 
determined to bound an appropriate parameter from above and below. It also 
is shown how the original differential equation may be transformed to a Riccati 
equation in such a way as to facilitate both the Heisenberg expansion of the 
solution in (0, yl) and numerical integration in (yl, 00). These methods are applied 
to a velocity profile that is linear in (0, yl) and asymptotically logarithmic as 
y -+ 00, and it is found that the mean of the two variational approximations is 
in excellent agreement with the results of numerical integration of the Riccati 
equation. 

1. Introduction 
Investigations of the stability of the parallel shear flow U(y) (Lin 1955) or of 

the transfer of energy from such a shear flow to a surface wave at y = 0 (Brooke 
Benjamin 1959,1960; Miles 1957a, 1959a,b, 1962)lead to thefollowingboundary- 
value problem for the inviscid stream function $(y) exp [ ik(x  - ct) ] .  

Solve the inviscid Orr-Sommerfeld equation 

(U-C)($6”-k2qb)- U”q5 = 0 (1.1) 

for &y), y > 0, subject to the null condition 

#(Y) + 0 (ICY -+ co), 
and determine the complex parameter 

where k is a real positive wave-number, and c is a complex velocity having 
a small, positive-imaginary part ci. 

We use primes to imply differentiation with respect to y, the subscript zero to 
imply evaluation a t  y = 0 (e.g. 4; d$/dy at y = 0), and the subscript c to 
imply evaluation a t  the singular point y = yc, defined by 

w = zc + iv = [ 1 + ( U; qbo/cq5;)]-1, (1.3) 

U(Y,) = c. (1.4) 

t Present address : Department of Mathematics, Institute ofAdvenced Studies, Australian 
National University, Canberra. 
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We shall assume that U(y) is a monotonically increasing function of y that 
vanishes a t  y = 0. 

The following treatment of this boundary-value problem was developed for 
a specific, surface-wave generation problem (Miles 1962). It appears likely, 
however, that the method of attack should be of more general interest, and it 
is for this reason that the analysis is being published separately. 

The principal difficulty in solving the boundary-value problem posed by (1.1) 
to (1.3) is the singularity at  y = yc, where # exhibits the behaviour 

# + #A1 + ( U m )  (Y - 9,) 1% [k(y - %)I+ w 4 Y  - Y J I &  (1-5) 

The solution for y 9 yc is well behaved, on the other hand, and its asymptotic 
behaviour is given by 

provided that Un/kz(  U - c) vanishes uniformly as Icy + co. 
We shall attack the problem on the hypotheses that (u,) there exists a real 

( 1 . 7 ~ )  number Ey, such that 

and ( b )  p l - c ]  % ci, ( 1 . 7 b )  

where the subscript 1 implies evaluation at  y = yl. We then may consider separ- 
ately the intervals (0 ,  y,), near which q5 is singular according to ( 1 4 ,  and (y,, co), 
in which the differential equation (1.1) is regular. We shall designate the solutions 
in these intervals as the inner and outer solutions and seek approximations to 
them that tend to the exact solutions as ky, --f 0 and ci --f 0 + , respectively. 
Before entering into those considerations, however, we shall find it convenient 
to transform the dependent variable along lines suggested by Lighthill (1953, 
1957). 

lycl < Y1 

2. Transformations 
Introducing the dependent variables 0 and w according to 

# = ( U  - c )  8(y) = k-2( u - c)-1 w’(y) (2.1 a, b) 

and the abbreviation Y(y) = (U-Cl2,  (3.3) 

we may transform the second-order differential equation (1.1) to the pair of 
first-order differential equations 

Y0‘ = w and a’ = k21’0. (2.3 u,, b )  

Eliminating either w or 0 between (2.3a,b), we obtain the complementary, 
Sturm-Eiouville equations 

( 2 . 4  ( I-0’)’- k2Y0 = 0 

and (Y-lw’)t-k2Y-1w = 0. ( 2 . 5 )  

We remark that O(y) exp [ i k ( x -  ct) ]  and w(y) exp [ ik (x  - ct ) ]  are proportional t o  
the inclination of the streamlines and the perturbation pressure, respectively, 
in the inviscid flow field of the physical problem. 
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We also shall find it convenient to introduce 

Q(y) = - 8/ YO‘ = - a‘/kZYw. (2.6n, b )  

Substituting (2.6a, b )  into (2.4) and (2 .5 ) ,  respectively, we obtain the Riccati 
equation Q‘ = k2YQ2- Y-1, (2.7) 

where Q - (kP)-l as ky-+co.  (2.8) 

Substituting ( 2 . l a )  and (2.6a) into (1.3), we obtain 

w = 1 + u;c!&. 

3. Inner solution 

we obtain 
Integrating (2.7) inward from y = y1 along a path indented under y = yc, 

Q = Q,-Jg: Y--ldy+k’J-; PQZdy. (3.1) 

We may use this result to obtain, by iteration, an expansion of !& in powers of k2. 
This is, in essence, Heisenberg’s procedure (Lin 1955, $3.4) for solving the 
boundary-value problem posed by (1.1)-(1.3). In  (what is equivalent to) the 
conventional application of this procedure, one assumes U’ 0 in y 2 y, and 
takes Q, = l / k q  in accord with (2.8). 

Invoking the restriction (1.7a), we shall rest content with the first approxi- 
mation to (3.1), which yields 

Q o  = (%+ Ki) [I O(kd2I7  (3.2) 

where K ,  = /oui(u-c)-2dy. (3.3) 

Integrating (3.3) by parts, we obtain 

J = Kl+(?J;c)-‘ = -[U;(CG-C)]-’- U’-2U’’(U-~)-1dy. (3.4) so”‘ 
Substituting (3.2) and (3.3) into (2.9), we obtain 

w = U&(Q,+J) [I +o(ky,)2]. (3 .5 )  

Invoking the restriction (1.7b), we have the known result (Lin 1955) that the 
imaginary part of w is derived almost entirely from the integral J according to 

21 = -;.(u,”u;c/U~3)[l+O(JC[yc()2]. (3-6) 

4. Outer solution 
It remains to determine the parameter Q, from the outer solution. We first 

remark that, in so far as we may approximate U, - c as real in y > y1 by virtue 
of (1.7 b), Y(y) is a positive definite function in (y,, LO). Applying Sturm’s oscilla- 
tion theorem (Ince 1944) to the differential equations (2.4) and (2.5) and invoking 
the requirement that each of 8 and a vanishes at y = co, it then follows that 
neither 8 nor a can vanish in (y,, co).j- This implies that the function Q is bounded 
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and non-oscillatory in (y,, co), in consequence of which its solution by numerical 
integration is straightforward. In  carrying out this integration it generally 
would appear to be expedient to introduce Y ,  rather than y, as the independent 
variable and to integrate inward from Y2, 52, = l/kY, to Y,, Q,, where ky2 9 1. 

We also may obtain variational approximations to 52, that bound it from above 
and below. Multiplying the differential equation (2.4) through by either 8 or its 
complex conjugate 8*, integrating by parts over (y,, oo), invoking the null con- 
dition a t  y = 00, and solving the resulting expressions for a,, we obtain 

Operating similarly on (2.5), we obtain 

52, = (kw1)-2 s,: (w’2 + k2w2) Y- ldy  

Y 

= [kwl[-2j (lw’(2+k2 I?+) Y-’dy. 
Y l  

( 4 . 2 ~ )  

(4.2b) 

The integrals ( 4 . 1 ~ )  and ( 4 . 2 ~ )  are (a) stationary with respect to first-order 
variations of 8 and w about the true solutions of (2.4) and (2.5),  respectively, 
provided that the approximate solutions are differentiable and vanish uniformly 
as ky + co, (b) absolute minima with respect to arbitrary variations about the 
true solutions, and (c) invariant under scale transformations of 8 and w. These 
properties render (4.1 a) and ( 4 . 2 ~ )  quite suitable for the approximate deter- 
mination of SZ,, bounding it from above and below. 

The integrals (4.lb) and (4.2b) are identical with ( 4 . 1 ~ )  and ( 4 . 2 ~ )  for real 
8 and w, but we have included them by virtue of their utility in the more general 
case of unrestricted, complex c. 

Perhaps the simplest approximations in connexion with the variational in- 
tegrals of (4.1) and (4.2) are the solutions to (2.4) and (2.5) for U’(y) = 0, namely 

8 = e-ky and = e-ku. (4 .3~4  b )  

Designating the corresponding approximations to 0, by 52,- and 52,+ (implying 
lower and upper bounds, respectively), we obtain 

and 

We remark that the approximation (4.4) also may be obtained by substitutkg 
52 = (l /kY)+f(y) in (2.7), neglecting f 2 ,  and integrating the result between 

t It is readily seen (for example, by comparing (4.1 b) to (4.1 a) )  that these assumptions 
render 8/Bl and w/wl real and hence that B and w are real within constant, possibly 
complex factors. This remark justifies the subsequent application of Sturm’s oscillation 
theorem (or a trivial generalization thereof). 
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y = y1 and y = 00. We also may show that (4.4) is an asymptotic approximation 
to Ql as ky, -+ co; however, we intend to use (4.4) for small values of ky,. 

5. Application to turbulent boundary layer 
We now apply the foregoing development to the mean velocity profile for a 

turbulent boundary layer, the results being required in connexion with the 
afore-mentioned surface-wave problem (Miles 1962). An approximation to this 
profile that agrees well with observations is given by (Miles 19573) 

in the laminar sublayer and by 

U = Ul + ( U, / K )  [a - tanh (+a)] (5 .2n)  

and y = y1 + (v /~KU*)  sinh a (5.3b) 

outside this sublayer, where v is the kinematic viscosity, K is von K&rm&n’s 

is the velocity at  the edge of the laminar sublayer, and a is a parametric variable. 
The asymptotic form of (5.2) is 

u = ( G / V , Y  (0 < Y < Yl) ,  (5.1) 

constant, u, = ( G / V ) Y l  (5.3) 

u N u ~ + ~ [ l o g ( ~ ) - l + o ~ ) ] ,  (5.4) 

which relates the usual additive constant in the logarithmic profile to KU,/U*. 
We shall identify y1 in this representation with y1 in (1.7), thereby implying 
ky, < 1. 

We may represent our results as functions of the parameters 
R = KU*/kv 

and A = K(U~-C) /U* .  

Introducing the change of variable 

in (2.7), we then obtain 
Q ( Y )  = (K2/kG)G(a)  

2RG’(a) = [v2(a) G2(a) - V-’(E)] COSha, (5.8a) 

where ~ ( a )  = A + a - tanh (+a). (5.8b) 

Substituting (5.1) and (5.7) into (3.4) and (3.5), we may place the result in the 

where W(R, A )  = RG(0) -A-’. (5.10) 

Turning to thevariational approximations (4.3) and (4.4), substituting (5.2a, b) 
therein and then determining the corresponding approximations to W through 

form w = (KC/U* )  W(&A),  (5.9) 

(5.7) and (5.10) yields 

W- = - A-1 + R2 exp ( - R-lsinh a) w2(a) cosh ada ]-I (5.11) 

and W+ = - A-lf  /om exp ( - R-l sinh a)  v-’(a) cosh ada. (5.12) 

Numerical results for W-, W+ and +(W- + W,) are compared with those obtained 
through the direct integration of (5.8) in table 1 for K = 0.4. We conclude that 
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the individual approximations W- and W+ are likely to be adequate only for 
rather large values of the Reynolds number R, but that the mean variational 
approximation +(W-+W+) should be adequate for R 2 10 (smaller values of R 
were of no interest in the contemplated application of the results) and A 2 0.4 

A R w+ w- +( w, + W J  W 
0.4 10 2.827 - 0.6185 1.104 1.272 

1 0 2  8.676 2.818 5.747 5.875 
103 30.64 20.78 25.71 25.88 
104 147.1 126.0 136.6 136.9 

1 10 1.016 0.2144 0-630 0.6634 
102 5.215 3.137 4-176 4.240 
103 23.40 18.60 21.00 21.11 
104 125.1 111.8 118.5 118.8 

2 10 0.3678 0.1803 0.2741 0.2850 
102 3.120 2.380 2-750 2.775 
103 16.93 14.63 15.78 15.84 
104 99.72 91.85 95.79 95.96 

4 10 0.0777 0.0473 0.0625 0.0640 
102 1.555 1.368 1.462 1.467 
103 10.34 9.533 9.937 9.956 
104 68-37 64-86 66.62 66.68 

TABLE 1. A comparison of the mean variational approximation +( W++ W-) ,  as deter- 
mined from (5.11) and (5.121, with the result for W given by (5.10) after numerical inte- 
gration of (5 .8) .  

(U,-c 2 Ci* ) .  Granted the availability of a high-speed computer, the integra- 
tion of (5.8)-or, in the general case, of (2.714s straightforward, but even then 
the use of the mean variational approximation may be more economical. 

This work was supported by the Office of Naval Research under Contract 
NONR-233( 70). 
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